Abstract
Malaria larvae embrace unpredictable variable life periods as they spread across many stratospheres of the mosquito vectors. There are transcriptomes of a thousand distinct species. Ribonucleic acid sequencing (RNA-seq) is a ubiquitous gene expression strategy that contributes to the improvement of genetic survey recognition. RNA-seq measures gene expression transcripts data, including methodological enhancements to machine learning procedures. Scientists have suggested many addressed learning for the study of biological evidence. An enhanced optimized Genetic Algorithm feature selection technique is used in this analysis to obtain relevant information from a high-dimensional Anopheles gambiae dataset and test its classification using SVM-Kernel algorithms. The efficacy of this assay is tested, and the outcome of the experiment obtained an accuracy metric of 93% and 96% respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.