Abstract

The goal of robust design is to develop stable products that exhibit minimum sensitivity to uncontrollable variations. The main drawback of many quality engineering approaches, including Taguchi's ideology, is that they cannot efficiently handle presence of several often conflicting objectives and constraints that occur in various design environments. Classical vector optimization and multiobjective genetic algorithms offer numerous techniques for simultaneous optimization of multiple responses, but they have not addressed the central quality control activities of tolerance design and parameter optimization. Due to their ability to search populations of candidate designs in parallel without assumptions of continuity, unimodality or convexity of underlying objectives, genetic algorithms are an especially viable tool for off-line quality control. In this paper we introduce a new methodology which integrates key concepts from diverse fields of robust design, multiobjective optimization and genetic algorithms. The genetic algorithm developed in this work applies natural genetic operators of reproduction, crossover and mutation to evolve populations of hyper-rectangular design regions while simultaneously reducing the sensitivity of the generated designs to uncontrollable variations. The improvement in quality of successive generations of designs is achieved by conducting orthogonal array experiments as to increase the average signal-to-noise ratio of a pool of candidate designs from one generation to the next.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.