Abstract

We consider the problem of minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals. We propose a family of iterative improvement heuristics based on previous work by Potts [Analysis of a heuristic for one machine sequencing with release dates and delivery times. Operations Research 1980;28:1436–41] and Uzsoy [Scheduling batch processing machines with incompatible job families. International Journal for Production Research 1995;33(10):2685–708] and combine them with a genetic algorithm (GA) based on the random keys encoding of Bean [Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 1994;6(2):154–60]. Extensive computational experiments show that one of the proposed GAs runs significantly faster than the other, providing a good tradeoff between solution time and quality. The combination of iterative heuristics with GAs consistently outperforms the iterative heuristics on their own.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.