Abstract
This paper deals with the load-balancing of machines in a real-world job-shop scheduling problem with identical machines. The load-balancing algorithm allocates jobs, split into lots, on identical machines, with objectives to reduce job total throughput time and to improve machine utilization. A genetic algorithm is developed, whose fitness function evaluates the load-balancing in the generated schedule. This load-balancing algorithm is used within a multi-objective genetic algorithm, which minimizes average tardiness, number of tardy jobs, setup times, idle times of machines and throughput times of jobs. The performance of the algorithm is evaluated using real-world data and compared to the results obtained with no load-balancing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.