Abstract

Genetic algorithms (GAs) have been extensively used as a means for performing global optimization in a simple yet reliable manner. However, in some realistic engineering design optimization domains the simple, classical implementation of a GA based on binary encoding and bit mutation and crossover is often inefficient and unable to reach the global optimum. In this paper we describe a GA for continuous design space optimization that uses new GA operators and strategies tailored to the structure and properties of engineering design domains. Empirical results in the domains of supersonic transport aircraft and supersonic missile inlets demonstrate that the newly formulated GA can be significantly better than the classical GA in both efficiency and reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.