Abstract
<p>Genetic algorithms have emerged as a powerful optimization technique for feature selection due to their ability to search through a vast feature space efficiently. This study discusses the importance of feature selection for prediction in healthcare and prominently focuses on diabetes mellitus. Feature selection is essential for improving the performance of prediction models, by finding significant features and removing unnecessary among them. The study aims to identify the most informative subset of features. Diabetes is a chronic metabolic disorder that poses significant health challenges worldwide. For the experiment, two datasets related to diabetes were downloaded from Kaggle and the results of both (datasets) with and without feature selection using the genetic algorithm were compared. Machine learning classifiers and genetic algorithms were combined to increase the precision of diabetes risk prediction. In the preprocessing phase, feature selection, machine learning classifiers, and performance metrics methods were applied to make this study feasible. The results of the experiment showed that genetic algorithm + logistic regression i.e., 80% (accuracy) works better for PIMA diabetes, and for Germany diabetes dataset genetic algorithm + random forest and genetic algorithm + K-Nearest Neighbor i.e., 98.5% performed better than other chosen classifiers. The researchers can better comprehend the importance of feature selection in healthcare through this study.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.