Abstract
A number of earlier researches have emphasized the on-the-job scheduling problems that occur with a single flexible machine. Two solutions to the problem have generally been considered; namely minimization of tool switches and minimization of tool switching instances. Methods used to solve the problems have included KTNS heuristic, dual-based relaxation heuristic, and non-LP-based branch-and-bound methods. However, scant literature has considered the case of job scheduling on multiple parallel machines which invokes another problem involving machine assignment. This paper addresses the problem of job scheduling and machine assignment on a flexible machining workstation (FMW) equipped with multiple parallel machines in a tool-sharing environment. Under these circumstances, the authors have attempted to model the problem with the objective of simultaneously minimizing both the number of tool switches and the number of tool switching instances. Furthermore, a set of realistic constraints has been included in the investigation. A novel genetic algorithm (GA) heuristic has been developed to solve the problem, and performance results show that GA is an appropriate solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.