Abstract

AbstractDifferent imaging instruments are designed in the planetary exploration missions, which require respective photogrammetric software modules to support the geometric processing of planetary remote sensing images. To decrease the cost of software development and maintenance, this paper presents a generic pushbroom sensor model for planetary photogrammetry. Thus, various coordinate transformations can be conducted in a unified and efficient way, without considering the specific camera and the optical distortion equations. In terms of implementation, the camera file and orientation data file designed for the airborne linear array camera ADS40 are used to manage the interior orientation and exterior orientation parameters of planetary images. The generic pushbroom sensor model supports the summing mode, varying exposure times within an image and image distortions, which are typical problems in need of a solution in planetary mapping. Furthermore, an alternative photogrammetric process based on extracting tie points on approximate orthophotos is developed. The geometric accuracy and computational efficiency of the generic pushbroom sensor model were compared with the popular planetary cartographic software—Integrated System for Imagers and Spectrometers (ISIS). The experimental results demonstrate that the proposed generic pushbroom sensor model can (1) deliver the same geometric accuracy as the ISIS pushbroom sensor model, (2) greatly improve the computational efficiency of orthophotos generation and tie points extraction, and (3) support various types of planetary remote sensing images. Moreover, the proposed generic pushbroom sensor model reduces the cost of software development because different types of planetary images share the same code base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call