Abstract

Locality sensitive hashing (LSH) is an efficient method for solving the problem of approximate similarity search in high-dimensional spaces. Through LSH, a high-dimensional similarity join can be processed in the same way as hash join, making the cost of joining two large datasets linear. By judicially analyzing the properties of multiple LSH algorithms, we propose a generic method to accelerate the process of joining two large datasets using LSH. The crux of our method lies in the way we identify a set of representative points to reduce the number of LSH lookups. Theoretical analyses show that our proposed method can greatly reduce the number of lookup operations and retain the same result accuracy compared to executing LSH lookups for every query point. Furthermore, we demonstrate the generality of our method by showing that the same principle can be applied to LSH algorithms for three different metrics: the Euclidean distance (QALSH), Jaccard similarity measure (MinHash), and Hamming distance (sequence hashing). Results from experimental studies using real datasets confirm our error analyses and show significant improvements of our method over the state-of-the-art LSH method: to achieve over 0.95 recall, we only need to operate LSH lookups for at most 15% of the query points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.