Abstract

We are constantly exposed to a variety of environmental contaminants and hormones, including those mimicking endogenous estrogens. These highly heterogeneous molecules are collectively referred to as xenoestrogens and hold the potential to affect and alter the delicate hormonal balance of the human body. To monitor exposure and investigate potential health implications, comprehensive analytical methods covering all major xenoestrogen classes are needed but not available to date. Herein, we describe a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of multiple classes of endogenous as well as exogenous estrogens in human urine, serum, and breast milk to enable proper exposure and risk assessment. In total, 75 analytes were included, whereof a majority was successfully in-house validated in the three matrices. Extraction recoveries of validated analytes ranged from 71% to 110% and limits of quantification from 0.015 to 5 μg/L, 0.03 to 14 μg/L, and 0.03 to 4.6 μg/L in urine, serum, and breast milk, respectively. The applicability of the novel method was demonstrated in proof-of-principle experiments by analyzing urine from Austrian individuals and breast milk from Austrian and Nigerian individuals. Thereby, we proved the methods' feasibility to identify and quantify different classes of xenoestrogens simultaneously. The results illustrate the general importance of multiclass exposure assessment in the context of the exposome paradigm. Specifically, they highlight the need for estimating total estrogenic burden rather than single analyte or chemical class measurements and its potential impact in endocrine disruption and hormone related diseases including cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.