Abstract

The work presented in this paper describes a generic genetic algorithm called DUREHA’s (Dominance, Universal stochastic sampling and Rank-based Emulation of a Heuristic Algorithm) Algorithm for cryptanalysis of classical ciphers. The underlying objective of this paper is to automate the process of cryptanalysis in order to render salvage of time, and resources available, preserve population diversity, minimize the convergence rate and control mutation rates. While numerous algorithms have been proposed to automate this process for variegated ciphers, these approaches are yet isolated from each other. The existence of a generic algorithm to cryptanalyze any type of cipher is yet not true. The algorithm proposed in this paper aspires to address such issues. The implementation and experimentation of the proposed algorithm is accomplished using three types of classical ciphers namely monosubstitution, poly-substitution and columnar transposition. The theoretical validation and experimental results indicate that the proposed algorithm is able to decrypt the ciphers by reclaiming80.71% ,87.31%and 77.66% of letters in correct position in Mono-substitution, Columnar Transposition and Vignere cipher respectively. It is also able to distinguish between the three types of ciphers correctly and is able to correctly control the mutation andconvergence rates and preserve population diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.