Abstract

In his seminal paper [5], Granger presents an analysis which infers linear congruence relations between integer variables. For affine programs without guards, his analysis is complete, i.e., infers all such congruences. No upper complexity bound, though, has been found for Granger’s algorithm. Here, we present a variation of this analysis which runs in polynomial time. Moreover, we provide an interprocedural extension of this algorithm. These algorithms are obtained by means of multiple instances of a general framework for constructing interprocedural analyses of numerical properties. Finally, we indicate how the analyses can be enhanced to deal with equality guards interprocedurally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.