Abstract

Though existing state-of-the-art denoising algorithms, such as BM3D, LPG-PCA and DDF, obtain remarkable results, these methods are not good at preserving details at high noise levels, sometimes even introducing non-existent artifacts. To improve the performance of these denoising methods at high noise levels, a generic denoising framework is proposed in this paper, which is based on guided principle component analysis (GPCA). The propose framework can be split into two stages. First, we use statistic test to generate an initial denoised image through back projection, where the statistical test can detect the significantly relevant information between the denoised image and the corresponding residual image. Second, similar image patches are collected to form different patch groups, and local basis are learned from each patch group by principle component analysis. Experimental results on natural images, contaminated with Gaussian and non-Gaussian noise, verify the effectiveness of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call