Abstract
This study proposes a novel framework for evaluating the stability of data-driven controllers and the concept of statistical stability. The proposed framework can be used when it is challenging to show stability through conventional control theory. The novelty of this paper lies in that it provides a method for scientifically analyzing the stability of data-driven controllers, thereby improving the quality of data-driven controllers. The proposed framework consists of three parts: the generative model, controller optimizer, and verification model. A variational autoencoder is used to classify and randomly generate data, and the generated data are used to train the controller. A support vector machine is used to classify areas where the controller is statistically stable. The statistical stability of an optimal controller designed using a deep neural network structure is analyzed using the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.