Abstract
We present a domain adaptation based generative framework for zero-shot learning. Our framework addresses the problem of domain shift between the seen and unseen class distributions in zero-shot learning and minimizes the shift by developing a generative model trained via adversarial domain adaptation. Our approach is based on end-to-end learning of the class distributions of seen classes and unseen classes. To enable the model to learn the class distributions of unseen classes, we parameterize these class distributions in terms of the class attribute information (which is available for both seen and unseen classes). This provides a very simple way to learn the class distribution of any unseen class, given only its class attribute information, and no labeled training data. Training this model with adversarial domain adaptation further provides robustness against the distribution mismatch between the data from seen and unseen classes. Our approach also provides a novel way for training neural net based classifiers to overcome the hubness problem in zero-shot learning. Through a comprehensive set of experiments, we show that our model yields superior accuracies as compared to various state-of-the-art zero shot learning models, on a variety of benchmark datasets. Code for the experiments is available at github.com/vkkhare/ZSL-ADA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.