Abstract

ABSTRACTDrug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.