Abstract
Fluorescent cell imaging technology is fundamental in life science research, offering a rich source of image data crucial for understanding cell spatial positioning, differentiation, and decision-making mechanisms. As the volume of this data expands, precise image analysis becomes increasingly critical. Cell segmentation, a key analysis step, significantly influences quantitative analysis outcomes. However, selecting the most effective segmentation method is challenging, hindered by existing evaluation methods' inaccuracies, lack of graded evaluation, and narrow assessment scope. Addressing this, we developed a novel framework with two modules: StyleGAN2-based contour generation and Pix2PixHD-based image rendering, producing diverse, graded-density cell images. Using this dataset, we evaluated three leading cell segmentation methods: DeepCell, CellProfiler, and CellPose. Our comprehensive comparison revealed CellProfiler's superior accuracy in segmenting cytoplasm and nuclei. Our framework diversifies cell image data generation and systematically addresses evaluation challenges in cell segmentation technologies, establishing a solid foundation for advancing research and applications in cell image analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.