Abstract
The separation of Pb(II) and Hg(II) via a hollow fiber supported liquid membrane (HFSLM) is presented. The experiment studied the influence of types of extractants, the concentration of selected extractants, setting modules, operating time together with flow rates of feed and stripping solutions. The mathematical model used to predict the concentration of Pb(II) and Hg(II) in both feed and stripping solutions was developed based on chemical reactions. The results clearly showed that a double-module HFSLM can selectively separate Pb(II) and Hg(II) at a very low concentration. Optimum condition was achieved using 0.03M D2EHPA and 0.06M Aliquat 336 as the extractant for first and second modules. The flow rates of the feed and stripping solutions were 100mL/min. The complicated series of differential equations arising from the model was solved using the concept of Generating Function. The concentration of Pb(II) and Hg(II) in feed and stripping solutions, obtained from the model, fitted well with that from the experimental results as shown in Fig. 10. This indicated that the extraction and stripping reactions were important factors that governed the rate of Pb(II) and Hg(II) transport across the liquid membrane phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.