Abstract
The Yvon-Born-Green (YBG) integral equation is a basic result of liquid state theory that relates the pair potential of a simple fluid to the resulting equilibrium two- and three-body correlation functions. Quite recently, we derived a more general form that can be applied to complex molecular systems. This generalized-YBG (g-YBG) theory provides not only an exact relation between a given potential and the resulting equilibrium correlation functions, but also a remarkably powerful framework for directly solving the statistical mechanics inverse problem of determining potentials from equilibrium structure ensembles. In the context of coarse-grained (CG) modeling, the g-YBG theory determines a variationally optimal approximation to the many-body potential of mean force directly (i.e., noniteratively) from structural correlation functions and, in particular, allows “force-matching” without forces. While our initial efforts numerically validated the g-YBG theory with relatively simple systems, our more recent efforts have considered increasingly complex systems, such as peptides and polymers. This minireview summarizes this progress and the resulting insight, as well as discusses the outstanding challenges and future directions for the g-YBG theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.