Abstract
This work aims to introduce a generalized impulsive model for unimolecular dissociation processes. This model allows us to take into account the curvature of the reaction path explicitly. It is a generalization of the previously developed multi-center impulsive model [P.-Y. Tsai and K.-C. Lin, J. Phys. Chem. A 119, 29 (2015)]. Several limitations of conventional impulsive models are eliminated by this study: (1) Unlike conventional impulsive models, in which a single molecular geometry is responsible for the impulse determination, the gradients on the whole dissociation path are taken into account. The model can treat dissociation pathways with large curvatures and loose saddle points. (2) The method can describe the vibrational excitation of polyatomic fragments due to the bond formation by multi-center impulse. (3) The available energy in conventional impulsive models is separated into uncoupled statistical and impulsive energy reservoirs, while the interplay between these reservoirs is allowed in the new model. (4) The quantum state correlation between fragments can be preserved in analysis. Dissociations of several molecular systems including the roaming pathways of formaldehyde, nitrate radical, acetaldehyde, and glyoxal are chosen as benchmarks. The predicted photofragment energy and vector distributions are consistent with the experimental results reported previously. In these examples, the capability of the new model to treat the curved dissociation path, loose saddle points, polyatomic fragments, and multiple-body dissociation is verified. As a cheaper computational tool with respect to ab initio on-the-fly direct dynamic simulations, this model can provide detailed information on the energy disposal, quantum state correlation, and stereodynamics in unimolecular dissociation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.