Abstract
Implementing neuromorphic algorithms is increasingly interesting as the error resilience and low-area, low-energy nature of biological systems becomes the potential solution for problems in robotics and artificial intelligence. While conventional digital methods are inefficient in implementing massively parallel systems, analog solutions are hard to design and program. Stochastic Computing (SC) is a natural bridge that allows pseudo-analog computations in the digital domain using low complexity hardware. However, large scale SC systems traditionally suffered from long latencies, hence higher energy consumption. This work develops a VLSI architecture for an SC based binocular vision system based on a disparity-energy model that emulates the hierarchical multi-layered neural structure in the primary visual cortex. The 3-layer neural network architecture is biologically plausible and is tuned to detecting 5 different disparities. The architecture is compact, adder-free, and achieves better disparity detection compared to a floating-point version by using a modified disparity-energy model. A generalized 1x100 pixel processing system is synthesized using TSMC 65nm CMOS technology and it achieves 71 % reduction in area-delay product and 48 % in energy savings compared to a fixed-point implementation at equivalent precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.