Abstract

This article presents a generalized simplified virtual vector pulsewidth modulation (SVVPWM) to attain the capacitor voltage balancing of multilevel diode-clamped converter (DCC) for all operational conditions, which is not possible by using conventional space vector pulsewidth modulation (PWM) and carrier-based PWM methods. Virtual vector PWM is a solution presented in the literature to sort out this issue but it becomes more complex for higher level converters. The proposed SVVPWM method is simple and easy to implement for any level converter because it converts the space vector (SV) diagram of any level converter to three-level SV diagram. The SVVPWM assures the natural voltage balancing under steady states and ideal operations. Under dynamic operations, a generalized equation that describes the influence of neutral point currents on dc-link capacitor's voltage has been derived and a general decoupled voltage balancing control for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -level DCC is presented. The proposed modulation method is implemented on five-level and seven-level DCCs to authenticate the effectiveness of decoupled voltage balancing control. Simulation and experimental results demonstrate that the proposed modulation strategy is easy to implement and effectively controls the balance of the capacitor voltages for the whole range of modulation index and load power factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call