Abstract

Abstract This project has developed a new procedure and a unique statistical and semi-analytical model to predict oil recovery at any water/oil ratio (WOR) and ultimate oil recovery for mature reservoirs under water injection. The new approach uses fractional flow, and multiple linear regressions. We have studied the linear portion of the commonly used plot of log WOR vs. recovery factor (RF) determining the boundaries of that straight-line zone (SLZ) in terms of initial and final RF and/or initial and final WOR numerically using mathematics rules. We also determined slopes and intercepts of this line as functions of commonly used rock and fluid properties values, such as relative permeability curves end-points, connate water saturations (Swc), residual oil saturations (Sor), mobility ratios (M) and Dykstra-Parsons coefficients (VDP). Characterizing this line helps us to determine the performance of a waterflood in terms of RF and pore volumes injected (PVI). We correlated the results from homogeneous and heterogeneous reservoirs by using a correction in terms of the VDP and mobility ratios. We validated the model using reservoir simulation and field cases. Limitations and assumptions are those derived from the application of the simplified fractional flow equation, including that no dip angle, no capillary pressure, and no gravity effects were considered. The model was tested and validated for waterfloods with relatively small initial gas saturation (Sg < 0.2). At higher gas saturations waterflooding process must be applied with extreme care to avoid displacing oil into the gas cap zone and reducing the remaining oil saturation (ROS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.