Abstract

We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work by Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.F. Roth-type due to D. McKinnon and M. Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.