Abstract

The Routh–Hurwitz criterion is one of the most popular methods to study the stability of polynomials with real coefficients, given its simplicity and ductility. However, when moving to polynomials with complex coefficients, some generalization exist but are either incorrect or inapplicable to most practical cases. To fill this gap, we hereby propose a directed generalization of the criterion to the case of complex polynomials, broken down in an algorithmic form, so that the method is now easily accessible and ready to be applied. Then, we demonstrate its use to determine the external stability of a system consisting of the interconnection between a rotating shaft and a PI-regulator, obtaining the necessary and sufficient conditions to achieve stabilization of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.