Abstract

BackgroundThe Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees. Despite a lack of biological justification, it has the advantages of being a proper metric and being computable in linear time. For phylogenetic applications involving genes, however, a crucial aspect of the trees ignored by the RF metric is the type of the branching event (e.g. speciation, duplication, transfer, etc).ResultsWe extend RF to trees with labeled internal nodes by including a node flip operation, alongside edge contractions and extensions. We explore properties of this extended RF distance in the case of a binary labeling. In particular, we show that contrary to the unlabeled case, an optimal edit path may require contracting “good” edges, i.e. edges shared between the two trees.ConclusionsWe provide a 2-approximation algorithm which is shown to perform well empirically. Looking ahead, computing distances between labeled trees opens up a variety of new algorithmic directions.Implementation and simulations available at https://github.com/DessimozLab/pylabeledrf.

Highlights

  • The Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees

  • A variety of measures have been designed for different types of trees, rooted or unrooted, some restricted to comparing tree shapes [2], others considering multilabeled trees, i.e. trees with repeated leaf labels [3] and yet others considering information on edge length [4]

  • Among them are the methods based on counting the structural differences between the two trees in terms of path length, bipartitions or quartets for unrooted trees, clades or triplets for rooted trees [5,6,7], or those based on minimizing a number of rearrangements that disconnect and reconnect subpieces of a tree, such as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR) or Tree-Bisection-Reconnection (TBR) moves

Read more

Summary

Introduction

The Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees. Different phylogenetic inference methods may lead to different trees, and each method, typically exploring a large space of trees, can result in multiple likely solutions for the same dataset. It follows that comparing trees is an essential task for finding out how inferred trees are far from one another, or how an inferred tree is far from a simulated tree or from a gold standard tree for the same datasets. A variety of measures have been designed for different types of trees, rooted or unrooted, some restricted to comparing tree shapes [2], others considering multilabeled trees, i.e. trees with repeated leaf labels [3] and yet others considering information on edge length [4]. Among them are the methods based on counting the structural differences between the two trees in terms of path length, bipartitions or quartets for unrooted trees, clades or triplets for rooted trees [5,6,7], or those based on minimizing a number of rearrangements that disconnect and reconnect subpieces of a tree, such as nearest neighbour interchange (NNI), subtree-pruning-regrafting (SPR) or Tree-Bisection-Reconnection (TBR) moves

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call