Abstract

As one of the key techniques in Prognostics and Health Management (PHM), accurate Remaining Useful Life (RUL) prediction can effectively reduce the number of downtime maintenance and significantly improve economic benefits. In this paper, a generalized RUL prediction method is proposed for complex systems with multiple Condition Monitoring (CM) signals. A stochastic degradation model is proposed to characterize the system degradation behavior, based on which the respective reliability characteristics such as the RUL and its Confidence Interval (CI) are explicitly derived. Considering the degradation model, two desirable properties of the Health Indicator (HI) are put forward and their respective quantitative evaluation methods are developed. With the desirable properties, a nonlinear data fusion method based on Genetic Programming (GP) is proposed to construct a superior composite HI. In this way, the multiple CM signals are fused to provide a better prediction capability. Finally, the proposed integrated methodology is validated on the C-MAPSS data set of aircraft turbine engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call