Abstract

<abstract><p>The notion of generalized quantum cluster algebras was introduced as a natural generalization of Berenstein and Zelevinsky's quantum cluster algebras as well as Chekhov and Shapiro's generalized cluster algebras. In this paper, we focus on a generalized quantum cluster algebra of Kronecker type which possesses infinitely many cluster variables. We obtain the cluster multiplication formulas for this algebra. As an application of these formulas, a positive bar-invariant basis is explicitly constructed. Both results generalize those known for the Kronecker cluster algebra and quantum cluster algebra.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.