Abstract

Understanding of the mechanisms that control the modifications of the bone weight-bearing attitude in response to external load conditions attracted considerable attention from researchers in the biological, medical, and radiological fields. This study presents a general approach for predicting the reaction of the bone tissue to cyclic loads with different intensity and temporal distribution. Empirical relationships are generated that incorporate the wealth of published experimental data, obtained from in vivo, ex vivo, and in vitro studies, into an integrated analysis. The developed procedure was guided by and is in close agreement with the published experimental data. The approach provides a general framework for predicting the effect of mechanical strain deviation from the physiological strain environment only, without consideration of the influence of any other changes in the biochemical, physiological, or psychological mechanisms controlling bone growth and damage. Further clinical investigations with controlled exercise and systematic bone scanning are necessary to check the applicability of the coefficients generated in the proposed method for general use on human subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.