Abstract
Here I propose a fundamentally new flexible model to reveal the association between a trait and a set of genetic variants in a genomic region/gene. This model was developed for the situation when original individual-level phenotype and genotype data are not available, but the researcher possesses the results of statistical analyses conducted on these data (namely, SNP-level summary Z score statistics and SNP-by-SNP correlations). The new model was analytically derived from the classical multiple linear regression model applied for the region-based association analysis of individual-level phenotype and genotype data by using the linear compression of data, where the SNP-by-SNP correlations are among the explanatory variables, and the summary Z score statistics are categorized as the response variables. I analytically show that the regional association analysis methods developed within the framework of the classical multiple linear regression model with additive effects of genetic variants can be reformulated in terms of the new model without the loss of information. The results obtained from the regional association analysis utilizing the classical model and those derived using the proposed model are identical when SNP-by-SNP correlations and SNP-level statistics are estimated from the same genetic data.
Highlights
Over the past ten years, significant progress has been made in understanding human genetic variation and developing DNA reading technologies
The other is а series of powerful statistical methods developed for regional association analysis (RAA)
I claim that Model (16) is suitable for aggregating test statistics calculated by various methods provided that the same original individual-level genotype and phenotype data were used and as usual, transformed into Z scores
Summary
Over the past ten years, significant progress has been made in understanding human genetic variation and developing DNA reading technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.