Abstract

An analogical approach has been used to extend to mixtures the radial distribution function of Percus–Yevick type of equations of state for hard spheres. The proposed approach follows the same formalism employed by Mansoori et al. to extend to mixtures the Carnahan–Starling equation of state. The generality of the proposed method permits to extend to mixtures equations of state with different singularities. In this work, it is applied to an equation of state which meets the correct low density and high density limits, previously proposed by Khoshkbarchi and Vera. The results show that both the radial distribution function and the resulting equation of state for a mixture of hard spheres, developed in this study, can accurately represent the computer simulation data while satisfying the correct limit at close-packing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.