Abstract
It has been shown that in a direct-sequence/code-division multiple-access (DS/CDMA) system employing binary phase-shift keying (BPSK) modulation the baseband equivalent of the CDMA multiplex is, under very mild assumptions, an improper complex random process, i.e., it has a nonzero pseudoautocorrelation function. The problem of linear multiuser detection for asynchronous DS/CDMA systems with improper multiaccess interference (MAI) is considered. A new mean-output-energy (MOE) cost function is introduced, whose constrained minimization leads to two new linear multiuser detectors, exploiting the information contained in the pseudoautocorrelation of the observables, and which generalize the classical decorrelating and minimum mean-square error (MMSE) receivers. The problem of blind adaptive receiver implementation based on subspace tracking is also tackled. Finally, the superiority of the new detectors with respect to the classical linear detection structures present in the literature is demonstrated through both theoretical considerations and computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.