Abstract

Time-domain finite-element solutions of Maxwell's equations require the solution of a sparse linear system involving the mass matrix at every time step. This process represents the bulk of the computational effort in time-dependent simulations. As such, mass lumping techniques in which the mass matrix is reduced to a diagonal or block-diagonal matrix are very desirable. In this paper, we present a special set of high order 1-form (also known as curl-conforming) basis functions and reduced order integration rules that, together, allow for a dramatic reduction in the number of nonzero entries in a vector finite element mass matrix. The method is derived from the Nedelec curl-conforming polynomial spaces and is valid for arbitrary order hexahedral basis functions for finite-element solutions to the second-order wave equation for the electric (or magnetic) field intensity. We present a numerical eigenvalue convergence analysis of the method and quantify its accuracy and performance via a series of computational experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.