Abstract
Radio spectrum is a precious resource and characterized by fixed allocation policy. However, a large portion of the allocated radio spectrum is underutilized. Conversely, the rapid development of ubiquitous wireless technologies increases the demand for radio spectrum. Cognitive Radio (CR) methodologies have been introduced as a promising approach in detecting the white spaces, allowing the unlicensed users to use the licensed spectrum thus realizing Dynamic Spectrum Access (DSA) in an effective manner. This paper proposes a generalized framework for DSA between the licensed (primary) and unlicensed (secondary) users based on Continuous Time Markov Chain (CTMC) model. We present a spectrum access scheme in the presence of sensing errors based on CTMC which aims to attain optimum spectrum access probabilities for the secondary users. The primary user occupancy is identified by spectrum sensing algorithms and the sensing errors are captured in the form of false alarm and mis-detection. Simulation results show the effectiveness of the proposed spectrum access scheme in terms of the throughput attained by the secondary users, throughput optimization using optimum access probabilities, probability of interference with increasing number of secondary users. The efficacy of the algorithm is analyzed for both imperfect spectrum sensing and perfect spectrum sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KSII Transactions on Internet and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.