Abstract
Data breach incidents result in severe financial loss and reputational damage, which raises the importance of using insurance to manage and mitigate cyber related risks. We analyze data breach chronology collected by Privacy Rights Clearinghouse (PRC) since 2001 and propose a Bayesian generalized linear mixed model for data breach incidents. Our model captures the dependency between frequency and severity of cyber losses and the behavior of cyber attacks on entities across time. Risk characteristics such as types of breach, types of organization, entity locations in chronology, as well as time trend effects are taken into consideration when investigating breach frequencies. Estimations of model parameters are presented under Bayesian framework using a combination of Gibbs sampler and Metropolis–Hastings algorithm. Predictions and implications of the proposed model in enterprise risk management and cyber insurance rate filing are discussed and illustrated. We find that it is feasible and effective to use our proposed NB-GLMM for analyzing the number of data breach incidents with uniquely identified risk factors. Our results show that both geological location and business type play significant roles in measuring cyber risks. The outcomes of our predictive analytics can be utilized by insurers to price their cyber insurance products, and by corporate information technology (IT) and data security officers to develop risk mitigation strategies according to company’s characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.