Abstract
The well-known formula for finding the area of a triangle in terms of its sides is generalized to volumes of polyhedra in the following way. It is proved that for a polyhedron (with triangular faces) with a given combinatorial structure and with a given collection of edge lengths there is a polynomial such that the volume of the polyhedron is a root of it, and the coefficients of the polynomial depend only on and and not on the concrete configuration of the polyhedron itself. A number of problems in the metric theory of polyhedra are solved as a consequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.