Abstract

This paper develops a unified procedure for dealing with gust-excited vibrations and aeroelastic phenomena on slender structures and structural elements in the framework of the Generalized Gust Factor technique. The structure is arbitrarily inclined and constrained, and excited on its fundamental mode. Galloping phenomenon is taken into account considering linearized effects only; vortex-induced oscillations are simulated through a nonlinear equivalent damping based on the classic Vickery and Basu approach. The effectiveness of the procedure is discussed and verified over a selection of circular-shaped structures, object of extensive experimental measures. The model proposed is fully suitable to reproduce the effective structural aeroelastic behavior, also in the synchronization region at lock-in. Large uncertainties, however, arise from the choice of the model parameters, on which the literature is still poor. Particular attention is devoted to the limiting magnitude (which governs the non-linear aerodynamic damping) and to the peak factor (which supplies the maximum response), both these quantities having a crucial role in the assessment of vortex-induced vibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.