Abstract

The classical economic production quantity (EPQ) model assumes that items are produced by a perfectly reliable production process with a fixed set-up cost. While the reliability of the production process cannot be perfected cost-free, the set-up cost can be reduced by investment in flexibility improvement. In this paper, we propose an EPQ model with a flexible and imperfect production process. We formulate this inventory decision problem using geometric programming (GP), establish more general results using the arithmetic-geometric mean inequality, and solve the problem to obtain a closed-form optimal solution. Following the theoretical treatment, we provide a numerical example to demonstrate that GP has potential as a valuable analytical tool for studying a certain class of inventory control problems. Finally we discuss some aspects of sensitivity analysis of the optimal solution based on the GP approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call