Abstract
Network data envelopment analysis (NDEA) is capable of considering operations and interdependence of a system’s component processes to measure efficiencies. There are numerous performance evaluation applications in which some indicators have hierarchical structures with a considerable number of sub-indicators. This problem of ignoring the hierarchical structure of indicators weakens the discrimination power of NDEA models and may result in inaccurate efficiency scores. In this paper we propose a generalized fuzzy Multiple-Layer NDEA (GFML-NDEA) model and GFML-NDEA-based composite indicators (GFML-NDEA-CI) to incorporate the hierarchical structures of indicators in the ambit of the particular two-stage NDEA models. To demonstrate the usefulness of the GFML-NDEA-CI model proposed, its application was tested by evaluating the efficiency of the performance-based budgeting (PBB) system in 14 governmental agencies in Iran. The comparative analysis results obtained from the GFML-NDEA-CI (multi-layer) model with those from the single-layer fuzzy NDEA-CI model indicate that the number of efficient decision-making units (DMUs) in the one-layer model is eight, whereas it is solely one DMU in the multi-layer model. The discrimination power of the multi-layer model proposed is significantly increased by observing that standard deviation of efficiency scores are increased by 41%, 61%, and 84% for possibility levels 0, 0.5, and 1, respectively. This is obtained while reducing information entropy, thus suggesting that the proposed model yields more reliable scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.