Abstract

This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call