Abstract

For the systematization of research on standing-wave linear ultrasonic motors (SWLUMs), this work develops a generalized electromechanical coupled model for characterizing SWLUMs. The proposed model focuses on dealing with modeling the generalized two-stage energy conversion in SWLUMs. The first-stage energy conversion is modeled by a four-terminal equivalent circuit model, which with a phase shifter and a couple of electromechanical transformers based on the electromechanical analogy method. The second-stage energy conversion is modeled by a physics-based, friction-driven system, involving contact nonlinearities between the stator and the mover. Furthermore, the effectiveness of this model and its further extension considering nonlinear vibrations of piezoelectric transducer (stator) are exemplified and discussed by a classical SWLUM with V-configuration stator, thereby indicating that the presented generalized model is valuable and pragmatic in simulating and characterizing SWLUMs both in electrical and mechanical domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.