Abstract

Abstract The dual-frequency ratio of radar reflectivity factors (DFR) has been shown to be a useful quantity as it is independent of the number concentration of the particle size distribution and primarily a function of the mass-weighted particle diameter Dm. A drawback of DFR-related methods for rain estimation, however, is the nonunique relationship between Dm and DFR. At Ku- and Ka-band frequencies, two solutions for Dm exist when DFR is less than zero. This ambiguity generates multiple solutions for the range profiles of the particle size parameters. We investigate characteristics of these solutions for both the initial-value (forward) and final-value (backward) forms of the equations. To choose one among many possible range profiles of Dm, number concentration, and rain rate R, independently measured path attenuations are used. For the backward approach, the possibility exists of dispensing with externally measured path attenuations by achieving consistency between the input and output path attenuations. The methods are tested by means of a simulation based on disdrometer-measured raindrop size distributions and the results are compared with a simplified version of the operational R–Dm method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call