Abstract

We present a greatly improved method for converging generalized valence bond (GVB) self-consistent wave functions. This method starts with the direct inversion in the interative subspace (DIIS) ideas of Pulay. Previously implemented DIIS methods were limited to special cases: closed-shell Hartree–Fock (HF), restricted open-shell HF, or a single pair GVB wave function. Here we extend this method to general wave functions including arbitrary numbers of closed-shell, restricted open-shell, and GVB orbitals (including second-order orbital mixing terms). The efficacy of GVB-DIIS is illustrated by applying it to several cases (including GVB wave functions with up to ten pairs) and comparing with other standard methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.