Abstract

Summary A three-dimensional finite-difference solver has been developed and implemented for Boussinesq convection in a spherical shell. The solver transforms any complex curvilinear domain into an equivalent Cartesian domain using Jacobi transformation and solves the governing equations in the latter. This feature enables the solver to account for the effects of the non-spherical shape of the convective regions of planets and stars. Apart from parallelization using MPI, implicit treatment of the viscous terms using a pipeline alternating direction implicit scheme and HYPRE multigrid accelerator for pressure correction makes the solver efficient for high-fidelity direct numerical simulations. We have performed simulations of Rayleigh-Bénard convection at two Rayleigh numbers Ra = 105 and 107 while keeping the Prandtl number fixed at unity (Pr = 1). The average radial temperature profile and the Nusselt number match very well, both qualitatively and quantitatively, with the existing literature. Closure of the turbulent kinetic energy budget, apart from the relative magnitude of the grid spacing compared to the local Kolmogorov scales, ensures sufficient spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call