Abstract
Using a cubic moment, we prove a Weyl-type subconvexity bound for the quadratic twists of a holomorphic newform of square-free level, trivial nebentypus, and arbitrary even weight. This generalizes work of Conrey and Iwaniec in that the newform that is being twisted may have arbitrary square-free level, and also that the quadratic character may have even conductor. One of the new tools developed in this paper is a more general Petersson formula for newforms of square-free level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.