Abstract

A computational method for arbitrary crack motion through a finite element mesh, termed as the generalized cohesive element technique, is presented. In this method, an element with an internal discontinuity is replaced by two superimposed elements with a combination of original and imaginary nodes. Conventional cohesive zone modeling, limited to crack propagation along the edges of the elements, is extended to incorporate the intra-element mixed-mode crack propagation. Proposed numerical technique has been shown to be quite accurate, robust and mesh insensitive provided the cohesive zone ahead of the crack tip is resolved adequately. A series of numerical examples is presented to demonstrate the validity and applicability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call