Abstract

This research delves into the generalized Beddington host–parasitoid model, which includes an arbitrary parasitism escape function. Our analysis reveals three types of equilibria: extinction, boundary, and interior. Upon examining the parameters, we discover that the first two equilibria can be globally asymptotically stable. The boundary equilibrium undergoes period-doubling bifurcation with a stable two-cycle and a transcritical bifurcation, creating a threshold for parasitoids to invade. Furthermore, we determine the interior equilibrium’s local stability and analytically demonstrate the period-doubling and Neimark–Sacker bifurcations. We also prove the permanence of the system within a specific parameter space. The numerical simulations we conduct reveal a diverse range of dynamics for the system. Our research extends the results in [ Kapçak et al. , 2013 ] and applies to a broad class of the generalized Beddington host–parasitoid model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.