Abstract
In many scientific applications, dynamic array redistribution is usually required to enhance the performance of an algorithm. In this paper, we present a generalized basic-cycle calculation (GBCC) method to efficiently perform a BLOCK-CYCLIC(s) over P processors to BLOCK-CYCLIC(t) over Q processors array redistribution. In the GBCC method, a processor first computes the source/destination processor/data sets of array elements in the first generalized basic-cycle of the local array it owns. A generalized basic-cycle is defined as lcm(sP, tQ)/(gcd(s,t)/spl times/P) in the source distribution and lcm(sP, tQ)/(gcd(s,t)/spl times/Q) in the destination distribution. From the source/destination processor/data sets of array elements in the first generalized basic-cycle, we can construct packing/unpacking pattern tables to minimize the data-movement operations. Since each generalized basic-cycle has the same communication pattern, based on the packing/unpacking pattern tables, a processor can pack/unpack array elements efficiently. To evaluate the performance of the GBCC method, we have implemented this method on an IBM SP2 parallel machine, along with the PITFALLS method and the ScaLAPACK method. The cost models for these three methods are also presented. The experimental results show that the GBCC method outperforms the PITFALLS method and the ScaLAPACK method for all test samples. A brief description of the extension of the GBCC method to multidimensional array redistributions is also presented.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.