Abstract

The use of Bernstein polynomials as the basis functions in Bézier's UNISURF is well known. These basis functions possess the shape-preserving properties that are required in designing free form curves and surfaces. These curves and surfaces are computed efficiently using the de Casteljau Algorithm. Ball uses a similar approach in defining cubic curves and bicubic surfaces in his CONSURF program. The basis functions employed are slightly different from the Bernstein polynomials. However, they also possess the same shape-preserving properties. A generalization of these cubic basis functions of Ball, such that higher order curves and surfaces can be defined and a recursive algorithm for generating the generalized curve are presented. The algorithm could be extended to generate a generalized surface in much the same way that the de Casteljau Algorithm could be used to generate a Bézier surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.