Abstract
We describe and analyze a variance reduction approach for Monte Carlo (MC) sampling that accelerates the estimation of statistics of computationally expensive simulation models using an ensemble of models with lower cost. These lower cost models — which are typically lower fidelity with unknown statistics — are used to reduce the variance in statistical estimators relative to a MC estimator with equivalent cost. We derive the conditions under which our proposed approximate control variate framework recovers existing multifidelity variance reduction schemes as special cases. We demonstrate that existing recursive/nested strategies are suboptimal because they use the additional low-fidelity models only to efficiently estimate the unknown mean of the first low-fidelity model. As a result, they cannot achieve variance reduction beyond that of a control variate estimator that uses a single low-fidelity model with known mean. However, there often exists about an order-of-magnitude gap between the maximum achievable variance reduction using all low-fidelity models and that achieved by a single low-fidelity model with known mean. We show that our proposed approach can exploit this gap to achieve greater variance reduction by using non-recursive sampling schemes. The proposed strategy reduces the total cost of accurately estimating statistics, especially in cases where only low-fidelity simulation models are accessible for additional evaluations. Several analytic examples and an example with a hyperbolic PDE describing elastic wave propagation in heterogeneous media are used to illustrate the main features of the methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.